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quantify spectral results in 13C FT NMR. 2 The main pur­
pose of this paper is to show that the use of PARR materi­
als in these analyses should be strongly restricted because 
NOE's may not be effectively suppressed in the general 
case. 

Early studies evaluated NOE quenching and enhanced 
spin-lattice relaxation for nonprotonated carbons or for 
other carbons in small molecules where rapid molecular 
tumbling makes the normal 1 3C-1H dipole-dipole relaxa­
tion process, / ? i D D , inefficient. In these restricted cases a 
relaxation contribution of ca. 0.3 sec to 7 ,iobsd ( « 3 sec - 1 to 
the relaxation rate, J?iobsd) from a 0.1 M solution of Cr-
(acac)3 is able to effectively suppress all NOE's and essen­
tially equalize all 7Ys for protonated and nonprotonated 
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PRFT Spectra of Cholesteryl Chloride with added Cr(acac)3 

0.06 

0.01 

Figure 1. Set of proton-decoupled PRFT spectra using the unmodified 
inversion-recovery sequence (T-180°-/-90°)„ at 67.9 MHz and 38 ± 
2°. Peak intensities for the carbons indicated are plotted semilogarith-
mically in Figure 2. t values, the interval between the 180° and 90° 
pulses, are given to the left of the spectra. The recovery time, T, was 
set to 2.0 sec (200 scans, 5000 Hz spectral width shown). Additional 
PRFT spectra (not shown) covering the range of 0.010-2.0 sec were 
also obtained and used for the calculation of T\ 's (unfilled circles in 
Figure 2). 

carbons. According to the theory, T 1
D D and T\°bsd are re­

lated by the enhancement factor t) as 

Jx DD/ Jx obsd = 1 ,988 / , 

where 1.988 is the maximum possible NOE. 
If after addition of PARR T\DD still makes a significant 

contribution to the total rate, this relation reveals that the 
NOE factor will not be fully suppressed. 

Most organic molecules of molecular weight > 200 will 
undergo efficient 1 3C-1H dipole-dipole relaxation (T\UD < 
1 sec)5 and addition of a relaxation reagent such as Cr-
(acac)3 to these solutions will not effectively quench NOE's 
at practical Cr(acac)3 concentrations. If a more effective 
relaxation reagent were used then a great deal of line 
broadening would of necessity result when NOE's were 
completely suppressed, since the T]e term would have to be 
much shorter than T\DD (on the order of 10 msec, typical-

Iy)-

Experimental Section 

Materials. Cholesteryl chloride was obtained from Aldrich 
Chemical Company and chromium (tris)acetylacetonate, Cr-
(acac)3, was purchased from Alfa Products. These substances were 
used without further purification. 

NMR Measurements. All 13C NOE's and spin-lattice relaxation 
times were obtained with complete decoupling on a Bruker HX-
270 (67.9 MHz) at 38 ± 2°. Samples were not degassed since re­
laxation contributions from dissolved O2 at atmospheric pressure 
are not significant with 13C T\ 's < 5 sec.5b 

The Ty measurements were performed using an unmodified in­
version-recovery pulse sequence (7,-180°-/-90°)„ using 8k trans­
forms. As shown below with the T1 data and NOE's the extreme 
narrowing approximation is still valid for this system at 67.9 MHz. 

OJ 0.2 
t(sec) 

0.3 

Figure 2. Semilogarithmic plot of S00-S, for the carbons labeled in Fig­
ure 1. 

Table I. 13C Relaxation Behavior and NOE Factors for Cholesteryl 
Chloride in Benzene<?6 with and without Added Cr(acac)3 

(0.1 M, temp 38 ± 2°) 

Chemical r.obsd, ^obsd, 
Carbon shift0 secft sec^ T.e NOEfe NOE^ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

39.2 
33.7 
59.7 
43.8 
140.7 
122.3 
32.0 
31.9 
50.3 
36.4 
21.1 
28.4 
42.4 
56.8 
24.4 
40.0 
56.5 
11.9 
19.1 
36.0 
18.9 
36.5 
24.2 
39.8 
28.2 
22.7 
22.9 

0.39 
0.39 
0.67 
0.37 
3.2 
0.65 
0.37 
0.70 
0.66 
4.3 
0.37 
0.37 
4.2 
0.65 
0.34 
0.34 
0.80 
1.3 
1.2 
0.67 
0.98 
0.46 
0.57 
0.86 
1.9 
1.8 
1.7 

0.14 
0.14 
0.17 
0.14 
0.22 
0.15 
0.14 
0.16 
0.17 
0.23 
0.14 
0.14 
0.24 
0.16 
0.14 
0.14 
0.17 
0.19 
0.19 
0.18 
0.18 
0.15 
0.16 
0.17 
0.20 
0.21 
0.21 

0.21 
0.23 
0.22 
0.22 
0.24 
0.19 
0.22 
0.21 
0.23 
0.25 
0.22 
0.22 
0.25 
0.22 
0.23 
0.25 
0.22 
0.23 
0.22 
0.24 
0.23 
0.22 
0.21 
0.22 
0.23 
0.23 
0.23 

2.0 
2.0 
2.0 
2.0 
0.80<* 
2.0 
1.8 
1.8 
2.0 
1.8 
1.9 
1.8 
1.8 
2.0 
2.0 
1.8 
1.9 
2.0 
2.0 
1.9 
2.0 
2.0 
2.1 
1.9 
1.8 
1.9 
1.9 

0.78 
0.77 
0.55 
0.80 
0.06 
0.59 
0.77 
0.52 
0.58 
0.11 
0.80 
0.77 
0.10 
0.61 
0.85 
0.75 
0.52 
0.27 
0.25 
0.45 
0.33 
0.65 
0.65 
0.47 
0.20 
0.20 
0.21 

o Ppm downfield from TMS. Assignments taken from ref 6. * Dia-
magnetic solution. cCr(acac)3 added, 0.1 M. d Average of three runs, 
high and low field carrier position, ±0.07. 

Results and Discussion 

In order to experimentally confirm the arguments given 
above we have performed a high-accuracy spin-lattice re­
laxation study on a medium-sized organic molecule, cho­
lesteryl chloride. The choice of this molecule was based in 
part on previously published work6 and because it has no 
functional group capable of intermolecular association. 
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NOE DETERMINATION^CHOLESTERYLCHLORDE 67.9MHz,380C,4kHz SHOWN 
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Figure 4. NOE determination at 67.9 MHz for the olefinic carbons in 
cholesteryl chloride. 

Figure 3. Upfield region in the 13C FT NMR spectra of 1 M cholesteryl chloride in benzene-^ (A) and after addition of Cr(acach (0.1 M) (B). All 
spectra: 128 scans with a recycle time of 25 sec, 4000 Hz spectral width shown using 16k transform. Note the lower signal-to-noise obtained with 
the paramagnetic reagent added. Bottom: proton-decoupled spectra (without instrumental NOE suppression). Top: pulse-modulated decoupled 
spectra (NOE suppression). 

ing carbon.9 The NOE's for these runs were reproducible to 
±0.05 to ±0.1. 

In Table I and Figure 3 we report 7Ys and NOE's for all 
carbons of cholesteryl chloride with and without paramag­
netic doping. The observed enhancement factors show that 
within the limits of experimental accuracy in the diamag-
netic solution all carbons except C-5 are totally relaxed by 
the dipole-dipole interaction; this includes even the quater­
nary carbons. The observed T\ 's for the CH and CH2 car­
bons of the ring framework are in a rough ratio of 2:1 and 
we can assume that the rotational motion is not particularly 
anisotropic which is in accordance with the earlier reported 
results.6 Interestingly, Allerhand reported the nuclear Ov-
erhauser enhancement for the C-5 atom to be 2.1 ± 0.3 at 
14 kG while we observed this factor to be 0.8 ± 0.07 (aver­
age of three runs) at 63 kG (see Figure 4). This indicates a 
competition between 13C-1H interactions and the chemical 
shift anisotropy (CSA) mechanism at high field. A prelimi­
nary investigation in this laboratory at 21.1 kG gave a T\ 
for C-5 of 5.6 sec (17 = 1.6 ± 0.2) compared with 3.2 sec (77 
= 0.8 ± 0.07) at 63 kG. Using a re({ = 6.6 X 10-" sec ob­
tained from the average T1 at 63.3 kG (JVT1 = 0.72) the 
chemical shift anisotropy factor, Aa, was calculated to be 
~340 ppm in this solvent at 38°. From the calculated shift 
anisotropy for C-5, 7"iCSA at 21.1 kG can be calculated in 
the standard way5 to be 48 sec and thus CSA relaxation 
would just give a minor contribution to T1

obsd at the lower 
field. 

Our Ti data for the carbons on the ring backbone differ 
significantly from T] 's reported earlier6 in carbon tetra­
chloride.10 

Addition of the paramagnetic reagent to the solution of 
cholesteryl chloride decreased the observed Ti 's and NOE's 
but even this relatively high concentration of Cr(acac)3 (0.1 
M) is not sufficient to equalize the spin-lattice relaxation 
times, NOE's, nor the resulting peak intensities. As seen 
from the electron-nuclear relaxation times, Tie, most car­
bons are equally affected by the paramagnetic chelate. In­
terestingly the T]e's for the quaternary carbons are on the 
average somewhat longer and Tie for C-6 a little shorter 
compared with the values for the other carbons. This could 
be explained by a steric effect causing the quaternary car-

With smaller molecules undergoing limited association the 
results would be similar. 

Figure 1 shows a set of 13C IRFT spectra for cholesteryl 
chloride with added Cr(acac)3 (at 0.1 M, the highest prac­
tical concentration for general use). This corresponds to the 
most difficult run experimentally; without paramagnetic 
doping the resolution and the sensitivity are significantly 
better. The data for five peaks assigned from Figure 1 are 
plotted semilogarithmically in Figure 2, to yield experimen­
tal Ti's from the slopes. Note that the five peaks are chosen 
to show the entire range of line separations, from signals 
that are only slightly resolved to completely separated 
peaks. Even when line separation is small, as between C-7 
and C-8, the internal estimated error is less than ±10%; 
typically the Ti's in this study could be considered to be ac­
curate to ±5% (for the well resolved carbons C-13, C-18, 
etc.). Three separate runs for each sample produced inter­
nal Ti deviations of less than 5-10%.7 

The NOE measurements were performed using the gated 
decoupling technique8 where the decoupler is gated on only 
during the data acquisition periods. The pulse delays were 
set to approximately five times the Ti for the slowest relax-

Journal of the American Chemical Society / 97:16 / August 6, 1975 



4485 

bons to be slightly less accessible to the paramagnetic che­
late. 

Conclusions 

This investigation clearly points to the fact that some 
precautions must be taken before using paramagnetic addi­
tives such as Cr(acac)3 in order to obtain quantitative re­
sults in 13C NMR. First, it is necessary to have a rough esti­
mate of the spin-lattice relaxation times for the sample. 
This estimate of the T\ 's serves two purposes: (1) it would 
give supplementary evidence for spectral peak assignments 
and (2) it would indicate the amount of paramagnetic re­
laxation reagent (PARR) needed to quench the NOE. If 
the dipole-dipole interaction is efficient enough then it will 
be impossible to effectively suppress NOE's with relaxation 
reagents without causing considerable line broadening. 
Also, spectral sensitivity is lowered for this application of 
PARR materials, since it is in this case particularly that 
NOE's are at or near the theoretical maximum5-6 (Figure 3 
is illustrative). 

In addition to the problems cited above, there is the pos­
sibility of solution complex formation between the metal 
chelate and substrate functional groups (e.g., OH, NH2, 
CX2H). l f '3 In this case the T\ leveling effect is not present; 
relaxation times for carbons close to the site of complexa-
tion are shortened preferentially and individual carbon 
NOE's may be variably affected. 

In cases where 7Vs are longer than several seconds this 
method can be valuable for obtaining quantitative 13C 
N M R results, provided discretion is used in the design and 
execution of the experiment. Also chemical suppression will 
allow accurate and rapid calculation of nuclear Overhauser 
enhancements for these molecules in laboratories where in­
strumental NOE suppression is not available. 
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the electronic nature of the nonclassical quenching step are 
still subjects of controversy. While Weller3 and Evans,4 

especially, agree that charge transfer interactions contrib­
ute most, their mechanisms for exciplex formation differ. 
Hammond5 believes that charge transfer interactions need 
not always be important: in some cases, resonance excita­
tion may be the dominant stabilizing force; in others, 
many factors may contribute. 
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